t^2=10t+10

Simple and best practice solution for t^2=10t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2=10t+10 equation:



t^2=10t+10
We move all terms to the left:
t^2-(10t+10)=0
We get rid of parentheses
t^2-10t-10=0
a = 1; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·1·(-10)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{35}}{2*1}=\frac{10-2\sqrt{35}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{35}}{2*1}=\frac{10+2\sqrt{35}}{2} $

See similar equations:

| t^2+10t+10=0 | | 8=3(x-3)-(x-7) | | 4(2x-2)-3=4(x-3)+25 | | 1/x+1/x-3=13/40 | | 4(3x-7)-4=4(x-4)+32 | | x+3/5=2x+6/2 | | 2y-7=11y+11 | | 12x-3-4x=8(x-3)D | | 5(7x-7)=39 | | 2+3+3x(-5x+2)=5+3x(2+3) | | -4x=39x+76 | | 3(3x-4)=44 | | -4x-12=39x+64 | | 8(8x-5)=27 | | 9+11s-6=6s+48-4s | | -4x-12=39x+52 | | t—30t=—69 | | 5x+13(4)=6x-3(-7) | | 2(6x-1)=26 | | x/4=2x-3/6 | | 6x-16=-88 | | 25p^2-6=19 | | x²-2x-48=0 | | v^2-1=80 | | 4x-28=56+2x | | 4y-16=45y-75 | | 5x13(4)=6x-3(-7) | | 5x13(4)=6x-3(- | | 8b–10+b+3b+2=7+2b+10b–18–3 | | 2w+14=48 | | 7−5+3x−1=3x+1 | | 7−5+3x−1=1x+1 |

Equations solver categories